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ABSTRACT

Business risks are increasingly shaped by fast-changing markets, complex supply chains, digital operations, and
evolving regulation. Traditional risk management approaches (workshops, qualitative scoring, periodic audits) remain
essential, but they often struggle with early detection, real-time monitoring, and scaling across many business units.
Machine learning (ML) can strengthen risk management by (1) identifying weak signals of emerging risks, (2)
estimating likelihood and impact with data-driven models, (3) improving detection of anomalies and fraud, and (4)
supporting better, faster mitigation decisions. This paper proposes an end-to-end ML risk management framework
that connects risk identification, quantification, explainability, and control selection. We review common business
risk categories (operational, supply chain, cyber, compliance/fraud, and financial/credit), map them to ML problem
types, and outline model development choices (supervised, unsupervised, NLP, time series, causal and probabilistic
models). We also present a comparative analysis of model families (logistic regression, random forest, gradient
boosting, deep learning, Bayesian networks, and anomaly detection methods) across accuracy, interpretability, data
needs, and deployment complexity. Practical issues including data quality, concept drift, fairness, governance, and
integration into Enterprise Risk Management (ERM) processes are discussed. Finally, we provide implementation
guidance and metrics aligned with risk outcomes, not only predictive performance.

1. Introduction

Risk management aims to protect value and enable confident decision-making. Most firms follow ERM-style cycles:
identify risks, assess likelihood/impact, prioritize, mitigate, monitor, and report. However, modern risk environments
generate continuous digital traces: transaction logs, operational events, supplier performance metrics, IT telemetry,
customer interactions, and external signals such as news, weather, and public vulnerability databases. ML provides
methods to detect patterns and predict outcomes from these data streams.

In practice, ML can support three “risk leverage points™:

1. Early warning: detecting abnormal patterns before losses occur (e.g., unusual process delays that correlate
with incidents).

2. Prioritization: ranking risks by predicted probability and expected loss.

3. Mitigation targeting: revealing which drivers most influence risk, enabling focused controls and resource
allocation.

Research and industry applications show ML’s role across risk classes. For example, operational risk modeling can
use probabilistic approaches (e.g., Bayesian networks) to quantify how causal factors change incident likelihood [1].
Supply chain risk work demonstrates ML-based prediction from structured and unstructured signals, but also
highlights interpretability needs for practitioner trust [2]. Cyber risk research emphasizes the data challenge and the
need for better datasets, while proposing ML-based assessment approaches using public signals (e.g., CVE data) [3—
4].
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Table 1— Traditional vs ML-Enhanced Risk Management

Dimension “Traditional approach HML-enhanced approach
Slgnal' Periodic reviews, audits Continuous monitoring, early warning models
detection
Qualitative  scoring,  expert . S o
Assessment . Data-driven probability/impact estimation
judgment
|Coverage ||Limited by human bandwidth ||Scales across processes, suppliers, systems |
|Adaptation ||Slow to update ||Retraining + drift monitoring |
Explainability [[Narrative rationale Explainable models + driver analysis (e.g., SHAP for tree
models) [5]

Fig. 1. Lifecycle and Key Dimensions of an AI System
2. Related Work and Theoretical Background

2.1 ML in Risk Management: Core Areas

A widely cited overview of ML and Al in risk management discusses applications in credit risk, market risk,
operational risk, and compliance, while noting limitations around transparency and skills [6]. Recent work in
operational risk pushes beyond periodic qualitative reviews toward data-driven, dynamic modelling of causal factors
using Bayesian network approaches [1]. In supply chain risk, ML methods are used for early identification of
production, transport, and supply risks, often using new data sources (including external data) [7], with dedicated
work highlighting the performance—interpretability trade-off [2]. Cyber risk literature underscores the lack of open,
high-quality data and the difficulty of measuring impacts, which constrains modelling and benchmarking [4].
Explainability is increasingly treated as a prerequisite for high-stakes risk decisions, with methods that connect local
explanations to global understanding for tree-based models [5].

2.2 Risk as a Prediction-and-Decision Problem

ML typically optimizes predictive metrics (accuracy, AUC, RMSE), but risk management needs decision metrics:
expected loss reduction, control effectiveness, false-alarm cost, and regulatory defensibility. A practical framing is:

e Risk event (E) occurs with probability (P(E|X))
e Loss (L(E)) depends on severity/impact
e Expected risk (R =\mathbb{E}[L] = P(E|X)\cdot \mathbb {E}[L(E)|X])

ML can estimate components of (R), while mitigation policy selects actions (a) (controls) to minimize expected loss
subject to cost and constraints.
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Table 2— Representative Studies Used in This Paper

Area

HStudy (year)

I |C0ntrib ution

|[pOI1

Operational risk

Cornwell et al. (2023)
[1]

Bayesian  network CFA  for

operational risk events

10.1016/j.pacfin.2022.101906

Supply chain risk

Baryannis et al. (2019)
(2]

ML framework; performance vs
interpretability

10.1016/j.future.2019.07.059

Supply chain risk
review

Schroeder & Lodemann
(2021) [7]

Systematic review of ML in SCRM

10.3390/1ogistics5030062

Systematic review of cyber risk data

Cyber risk data Cremer et al. (2022) [4] o 10.1057/s41288-022-00266-6
availability

Cyber risklgia ctal. 2024y (37 [ CYPer risk prediction from CVE|, 016 cwva 2023.121599

prediction signals

Explainability Lundberg et al. (2020)|/Global 'understandlng from local 10.1038/542256-019-0138-9
[5] explanations for trees

Enterprise risk Fuang et al. (2021) [8] Enter.prlse risk assessment with ML 10.1155/2021/6049195

assessment classifiers

Faimess —in skl /o doi et al. (2022) o7|[Frofit-faimess trade-offs ‘in “credit; o 1) 6/ i 2021.06.023

models scoring

Anomaly detection

Agyemang (2024) [10]

Comparative evaluation of]

unsupervised anomaly detection

10.1016/j.sciaf.2024.02386

General risk

management

ASME Open
Engineering (2025) [11]

Risk management based on ML

methods (engineering focus)

10.1115/1.4069023

3. Proposed ML-Driven Risk Management Framework

We propose a framework that aligns ML work with ERM operations. The key idea: models must plug into a decision
loop, not sit as isolated dashboards.

Step A: Risk taxonomy and use-case selection

Define risk classes and measurable outcomes:

Step B: Data and fe
Unify signals across:

ature architecture

Step C: Modelling strategy

Match ML approach

to the risk problem:

Operational incidents, process failures, losses

Supply disruption events and lead-time spikes

Cyber incidents, exploit likelihood, downtime
Fraud/compliance violations, suspicious activity

Credit default, churn, liquidity stress (depending on business)

Internal: ERP, CRM, ticketing, logs, audits, HR/attendance, finance
External: supplier news, weather, macro indicators, vulnerability databases (cyber), shipping data

Supervised (when labeled events exist): classification/regression
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e  Unsupervised/semi-supervised (rare events): anomaly detection, one-class models

e  NLP: risk mining from text (policies, incidents, emails, news)
e  Probabilistic/causal: Bayesian networks for driver analysis and scenario testing [1]

Step D: Explainability, controls, and actionability

Explain why the model flags a risk (feature attribution, counterfactuals, rule extraction). Explainability for tree models
can be built using methods that aggregate local explanations into global insights [5]. Then map drivers to controls:
monitoring thresholds, policy changes, supplier diversification, access restrictions, QA gates, etc.

Step E: Monitoring and governance
e  Dirift detection and periodic recalibration
e  Model risk management (validation, documentation, audit trails)

e Fairness and compliance checks (especially for customer-impacting decisions) [9]

Table 3 — Mapping Risk Stages to ML Deliverables

|ERM stage“ML deliverable ||Example output ||Owner |
|Identify ||Signal detection, NLP risk mining ||Emerging risk themes, anomaly clustersHRisk + Data team|
|Assess HPredictive scoring, severity modelsH(P(event)), expected loss ||Risk analytics |
|Prioritize ||Portfolio ranking ||Top 20 risks by expected loss ||CRO/ERM |
|Mitigate HControl recommendation ||Which levers reduce risk most ||Process owners |
|M0nit0r ”Drift + KPI dashboards ||Alert precision, loss reduction ||Risk ops + 1T |

4. Data Sources, Labelling, and Feature Engineering

4.1 Data challenges by risk type

e Operational risk: event logs may be incomplete; “near-miss” data is valuable but often missing.

e Supply chain risk: disruptions are influenced by external shocks; integrating external data improves
foresight [7].

e  Cyber risk: strong modelling is constrained by limited open loss data and inconsistent reporting [4].

o Compliance/fraud: labels may be delayed (confirmed cases), creating leakage risks.

e Credit/financial: richer labels exist but fairness and regulatory constraints are strict [9].

4.2 Labelling strategies

Confirmed incidents (binary classification)

Loss amount (regression / severity)

Time-to-failure (survival analysis)

Proxy labels: SLA breaches, exception counts, audit flags, customer complaints

4.3 Feature engineering patterns

Aggregations over time windows (7/30/90 days)

Ratios and trend deltas (week-over-week changes)

Network features (supplier/customer graph)

Text embeddings from incident descriptions/policies

Interaction terms and monotonic constraints (where needed for policy)
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Table 4 — Example Features for Business Risks

IRisk type HExample raw data HExample engineered features I
IOperational “Tickets, process timestamps ||Queue length trend, rework rate, exception frequency |
|Supp1y chain ||Lead times, OTIF, vendor metricsHLead—time volatility, supplier concentration index |
ICyber HCVE feeds, patch logs, IDS alerts HPatch lag, exploitability-weighted exposure (time series) |
|F raud/compliance||Transacti0ns, user activity ||Velocity rules, peer-group deviation, device mismatch score|
|Credit/ﬁnance ||Payments, behaviour ||Uti1ization trend, delinquency history, stability metrics |

5. Modelling Approaches for Risk Identification and Prediction

5.1 Supervised learning (event prediction, severity estimation)

When labelled outcomes exist, strong baselines include logistic regression and tree ensembles (random forest, gradient
boosting). In supply chain risk prediction, a key practical issue is interpretability vs performance for decision-making
[2]. Enterprise risk assessment can also be framed as a supervised classification task using common ML models [8].

5.2 Unsupervised anomaly detection (rare events, unknown patterns)

When incident labels are sparse, anomaly detection is common. A comparative evaluation of unsupervised methods
shows meaningful differences across One-Class SVM, Isolation Forest, LOF, and robust covariance approaches, with
Isolation Forest often offering a good precision—recall balance under certain conditions [10]. In risk operations,
anomaly detection is valuable for early warnings but must be tuned to manage false positives.

5.3 Probabilistic and causal models for actionable insights

Operational risk work illustrates Bayesian network-based modeling to quantify how causal factors influence incident
likelihood, improving targeting of mitigations [1]. Such models can support scenario testing (“if control X improves,
how does risk change?”).

5.4 NLP for risk sensing

NLP can extract risk signals from incident narratives, audit notes, vendor communications, and external text. This
often supports:

e Topic detection of emerging risks
e (lassification of incident types
o  Entity linking (suppliers, systems, products)

5.5 Explainability for high-stakes risk decisions

Explainable Al is essential in risk contexts. Tree-based explanation methods can combine local explanations into
global structure, supporting both analyst validation and stakeholder trust [5]. For credit-related models, fairness and
governance are central because decisions affect individuals and can trigger regulatory scrutiny [9].

Table 5 — When to Use Which Model Type

Scenario ||Recommended model family ||Why

sztlzeled incidents; structured Gradient boosting / RF High accuracy, handles nonlinearity
Need simple, auditable . .

baseline Logistic regression Transparent, stable, easy to govern
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IScenario ||Rec0mmended model family HWhy |
|Rare events; weak labels ||Isolation Forest / One-Class SVM ||W0rks without dense labels [10] |
INeed scenario reasoning ||Bayesian networks ”Driver quantification + what-if analysis [1] I

Converts narratives/news into measurable

Text-heavy risk signals NLP classifiers / embeddings .
signals

Constrained models + fairness
processors

Strict fairness constraints Manage bias and profit trade-offs [9]

6. Evaluation Metrics and Validation in Risk Contexts
6.1 Why classic ML metrics are not enough
Accuracy alone can be misleading when incidents are rare. Risk teams care about:
e Recall at top-k (catch the riskiest cases)
e  Precision (control false alarms)
o Cost-weighted loss (false negatives may be far more expensive)
o Expected loss reduction after mitigation

6.2 Backtesting and stress testing

Backtesting compares predicted risk vs realized incidents/losses over time. Stress testing evaluates model behavior
under plausible extreme conditions (supplier shock, cyber vulnerability surge, demand spikes).

6.3 Drift, calibration, and reliability

Risk environments drift. Operational processes change, suppliers change, attackers adapt. A governance plan should
include drift monitoring, recalibration, and performance reporting by segment.

Table 6— Risk-Aligned Metrics

|Metric ||Best for ||N0tes |

|AUC / PR-AUC ||Ranking cases ||PR-AUC is better for rare events |

Recall@k Triage workflows Measgres capture rate among limited investigation
capacity

|Expected cost ||Business value ||Incorporates false positive/negative cost |

Calibration (Brier, reliability) g:();‘ib:i;l;ty—based Needed when thresholds tie to policy

Drift metrics (PSI, KS, error . . .. .
drift) Monitoring Triggers retraining or review

7. Comparative Analysis of ML Approaches for Business Risk Management

This section compares methods across key deployment concerns: interpretability, data requirements, robustness, and
operational fit.
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Table 7 — Model Trade-offs for Risk Management

Model family ||Strengths ||Weaknesses ||Best-ﬁt risks
Logistic regression Highly interpretable; easy Limited nonlincar capture Cre(pt baselines, compliance
governance scoring

Random forest

Robust; handles mixed

features

Harder to explain than
linear

Operational risk, fraud triage

Bayesian networks

causal factor analysis

assumptions; setup effort

Gradient boosting (e.g., ) . Needs careful tuning;||Supply chain prediction [2],
XGBoost-like) Strong accuracy; flexible explainability needed enterprise risk scoring [8]
Deep learnin Strong for unstructured|{Data-hungry; harder|NLP risk mining, complex
p & data governance sensor/telemetry
Scenario reasoning;|[Requires structure

Operational risk CFA [1]

Anomaly detection
(iForest, OCSVM, LOF)

Works with limited labels

False positives; tuning

sensitive

Cyber/ops early warning [10]

7.2 Domain comparison

Supply chain research shows ML improves early identification of disruptions and can integrate external signals, but
adoption barriers include data standards and systems integration [7]. Cyber risk work highlights that limited open loss
datasets restrict validation, pushing many models to rely on proxies such as vulnerabilities and telemetry [4]. A cyber
risk prediction approach using CVE-based signals demonstrates one path to reduce expert bias and automate
forecasting [3]. For operational risk, Bayesian network approaches can link operational conditions to incident
likelihood, helping prioritize mitigations [1].

Table 8 — Domain Constraints vs Modeling Choices

||Data reality
|Supp1y chain ||Mu1ti-source, external shocks
|Cyber

|Operati0nal ||Rich internal logs; causal ambiguity”Bayesian networks + supervised triage [1] |

|D0main ||Practical modeling choice |

||Boosted trees + interpretable features [2,7] |

||Sparse impact labels, proxy-heavy ||Time series + supervised proxies; anomaly detection [3,4]|

|Credit/ﬁnance||Strong labels; strict regulation ||Interpretable models + fairness controls [9] |

. Implementation and Mitigation: Turning Predictions into Controls
A useful ML risk system must connect predictions to mitigation actions.
8.1 Control mapping

Once top drivers are identified, mitigation can be framed as:

e Prevent: reduce probability (patching, training, process redesign)

Detect: increase detection speed (monitoring thresholds, alerts)
Respond: reduce impact (playbooks, redundancy, insurance transfer)

Explainability helps translate model outputs into control levers. For tree models, explanation tooling can support both
local case investigation and global control strategy design [5].
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8.2 Human-in-the-loop workflows
Risk teams often need analyst review before action. A strong workflow:

Model produces risk score + top drivers

Analyst validates and annotates outcomes

Feedback loop improves labels and retraining

Policy defines when automation is allowed vs review required

8.3 Governance and model risk management

e-ISSN: 2454-9258, p-ISSN: 2454-809X

ML introduces “model risk”: errors, drift, hidden bias, and operational failure. This is why many risk frameworks

emphasize documentation, validation, and monitoring, especially in regulated domains [6,9].

Table 9 — Practical Checklist for Deployment

|Categ0ry ||Checklist items |

|Data ||Lineage, quality tests, leakage checks |

|Model ||Benchmark baselines, calibration, stress tests|

|Explainabi1ity||Driver stability, case-level explanations [5] |

|Monitoring ||Drift, alert volumes, incident capture rate |

|Governance ||Appr0val gates, audit trails, retraining policy|

|Mitigation ||Contr01 playbooks tied to risk drivers |

9. Challenges, Ethics, and Future Directions

9.1 Key challenges

e Data limitations: cyber risk in particular suffers from limited open data and inconsistent reporting [4].

o Interpretability vs performance: especially visible in supply chain risk prediction where practitioner trust

matters [2].
o  Concept drift: attackers adapt, suppliers change, processes evolve.

e Fairness and accountability: credit and customer-impacting risk models must manage bias and profit—

fairness trade-offs [9].
o Integration: risk tools must fit existing ERM governance and reporting.

9.2 Emerging directions
Hybrid systems: combine rules + ML + causal models (better governance and robustness).

Scenario generation: probabilistic models for what-if planning (building on CFA approaches) [1].
Better datasets and reporting standards: especially for cyber loss data [4].

Table 10 — Risks Introduced by ML and Mitigations

Operationalizing explainability: using global explanation methods to shape policies and controls [5].

|ML risk ||Example ||Mitigati0n |
|Drift ||Supp1ier behavior shifts post—contractHDrift detection + retraining cadence |
|Bias ||Disparate impact in scoring [9] ||Faimess evaluation + processors |
|Over—alerting ||Too many anomalies ||Threshold tuning + cost-based optimization|
|Leakage ||Using post-incident info ||Strict feature timing rules |
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|ML risk HExample HMitigation |
|Governance gap||N0 audit trail ||Model documentation + approvals |

10. Conclusion

Machine learning can materially strengthen business risk management by detecting early signals, quantifying risk
more consistently, and supporting targeted mitigation. However, success depends less on “the best algorithm” and
more on building an end-to-end system: risk taxonomy, data pipelines, model selection aligned to risk economics,
explainability, and governance. Comparative evidence across operational, supply chain, and cyber risk shows
consistent themes: interpretability and actionability are essential, data constraints shape feasible methods, and
continuous monitoring is mandatory in dynamic environments. Implemented well, ML shifts risk management from
periodic assessment toward continuous, decision-centric risk intelligence.
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